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THE USE OF MULIIPLE EBIC CURVES AND LOW VOLIAGE ELECTRON

MICROSCOPY IN 1HE MEASUREMEN1 OF SMALL DIFFUSION LENGIHS
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Diffusion length measurements were made in highly doped and radiation damaged

III-V semiconductors using the technique of charge collection microscopy (sometimes

known as electron beam induced current (EBIC)). EBIC curves were plotted while
using the SEM on a llne scan mode. Values of the currents read from these curves

were then equated to expressions obtained from the solution of the diffusion equa-

tion for a thick sample. An extended generation function was used in order to

account for the finite volume of the induced minority carriers. The surface recom-

bination velocity was either treated as an unknown In a system of two integral equa-

tions, or measured directly using low accelerating potentials for the electron beam.

With the emergence of III-V compounds in the field of photovoltalcs, it has

become increasingly more important to have accurate methods for determining small

(l to lO _m) diffusion lengths L. A reliable determination of the values of L

is necessary in device modeling, radiation damage studies, and device fabrication

since it is quite important to be able to assess the damage to the electronic pro-

perties of materials subject to certain processes.

Figure 1 shows the configuration that has been used to make these measurements.

lhe depicted geometry was chosen to permit direct measurements to be made on

finished solar cells. The contacts used were ohmic ones made wlth evaporated thln

films of gold. lhe current amplifier had fast response, low noise, low input Imped

ance, and the gain was calibrated. The leads were shielded, and the circuit ground

was separated from the SEM ground.

When energetic electrons impinge on semlconductlng material, electron hole

pairs are created. The required ionization energy is a function of the bandgap

(ref. l). In GaAs it takes 4.5 eV of incoming radiation energy to create a minority

carrier. If one assumes no surface recombination, and point generation of minority

carriers, the collected current follows a simple exponential decay form:

-x/L
Icc : Ioe (1)

where

Io maximum current collected (PN junction)

L diffusion length
X distance from PN junction

However, the surface recombination can be very large in III-V's, and its effect

(ref. 2) cannot be neglected in the measurement of L. Increasing the accelerating
potential for the electron beam minimizes the effect of surface recombination

velocity S. Unfortunately, this approach diminishes the resolution of this

technique, since for small L's the electron range then becomes comparable to the
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value of L. Figure 2 shows that at 30 kV - the most commonlyused accelerating
potential in routine SEMoperation - the electron range Re is about 3 _m.

For these reasons low accelerating potentials have been used to obtain the
charge collection microscopy curves used in these measurementsand calculations.
lhe integral solution of the two-dimenslonal diffusion equation with seml-lnflnlte
thickness and an extended generation function (ref. 3) in the form of a three-
dimensional gausslan distribution have been used here. Figure 3 shows an experi-
mental EBIC plot of the ratio of collected current to maximumcurrent (in the
depletion region). At any Xo, this ratio can be expressed as (ref. 4)

Icc(Xo )
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As can be seen one can measure or assume reasonable values for all the variables in

equation (2) except for the surface recombination velocity S, an unknown whose

effect is not negligible. Hence, two different approaches that allow the determina-

tion of S were undertaken, so that equation (2) could be solved numerically, and

the value of L could be extracted from the integral form.

Assume two different accelerating potentials (E1 and E2) for the electron

beam impinging on the same semiconductor. In functional form, the normalized cur-

rent at a given xo can be rewritten as

Iccl(Xo)
J f(L,E S x ....) (3)

IoI ' ' o

Icc2(X°) fio2 = f( ....E2,... ) (4)

Figure 4 shows two of the experimentally obtained EBIC curves at the different

potentials. The same xo is used, so one can assume the same value for the dif-
fusion length. This applies even in the case of graded doping or other nonuniform-

Ities. At the same xo, one can also assume that S will be the same, even for
different values of the recombination across the surfaces of the samples analyzed.

This allows the treatment of equations (3) and (4) as two integral equations with

two unknowns.
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The value for S can then be obtained by using an Iterative process, where an
initial value for S is guessed. Holding S constant in equation (3), an L is
found that satisfies the condition

lcc(calculated) - Icc(measured) _ TOLERANCE (5)

This value for L is then used in equation (4), where S is next varied to
satisfy equation (5). This process is repeated as necessary until an L and an S

are found which satisfy both equations (3) and (4). Numerical integration was done

using the Romberg method where the upper limit was increased until the last two com-

puted integrals differed by a negligible value. The roots (values of L and S) were

searched by using the Regula Falsi Method. The integral form for the complementary

error function was used. Figure 5 shows a flowchart for the numerical calculations
performed here.

The second method uses less computer time but requires a more sophisticated SEM.

It makes use of the result (ref. 5)

az In Icc : D (6)
z_O (as E_O)

which allows a more direct determination of the value of S while the sample is inside

the SEM specimen chamber. In order to use equation (6) and obtain accurate values, one

must have low voltage capabilities and the ability to vary the beam accelerating poten-

tial without changing the total beam current. Figures 6 and 7 show the determination

of S/D for the devices that were analyzed here. The GaAs diode was P on N. The

N region was silicon doped, with a carrier concentration of about IxlO IB. The Junc-

tion was very abrupt. The InP solar cell had a P-type base, doped at about IxlO17.
lhe cell had been subject to lOl2/cm 2 lO MeV proton irradiation.

Figures 8 and 9 show the measured values for diffusion length, as a function of
distance from the PN junction, for the same devices. The spread in the data points

from the different accelerating voltages (which ideally, would coincide for a given

Xo) has been used to assign a value to the uncertainty. The reported value has been

chosen as the L that is reached asymptotically as xo gets farther from the junc-
tion, since other workers (ref. 6) have observed that the measured value of L is more

reliable if a larger xo is used.

In summary, accurate evaluations of diffusion lengths for heavily to moderately

doped iii-V semiconductors and/or radiation damaged solar cells have been made possible
by using the experimental and numerical techniques described.
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FIGURE 1. - EXPERIMENTAL SETUP FOR CHARGE COLLECTION MICROSCOPY.
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FIGURE 3. - EBIC PLOT FOR A PN JUNCEION.
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FIGURE 4. - EBIC CURVES AT 4 AND 6 KV.
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FIGURE 8. - VALUES OF DIFFUSION LENGTHS IN THE GAAs DIODE.
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FIGURE 9. - VALUES OF DIFFUSION LENGTHS IN AN IRRADIATED INP

SOLAR CELL. P TYPE: NA_ I017/cM3: (AFTER I012/CM2 10 MEV
PROTON IRRADIATION). _ 1.7 UM±0.15 pM.
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